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Use of Precious Metal-Modified Nickel-Base Superalloys  
for Thin Gage Applications 

Donna Ballard1*, Ann Bolcavage2, and Randy Helmink2 
1Materials and Manufacturing Directorate, Air Force Research Laboratory, 

Wright-Patterson Air Force Base, OH 45433, USA 
2Rolls-Royce North America, *** 

 
Abstract 

Precious metal-modified nickel-base superalloys are being investigated for use in thin gage 

applications, such as thermal protection systems or heat exchangers, due to their strength and 

inherent oxidation resistance at temperatures in excess of 1050°C.  This overview paper 

summarizes the Air Force Research Laboratory (AFRL) & Rolls-Royce North America interest 

in experimental two phase γ-Ni + γ’-Ni3Al superalloys.  AFRL is interested in alloys with a base 

composition of Ni-15Al-5Cr (atomic %) with C, B, and Zr additions for grain-boundary 

refinement and strengthening.  The alloys currently being evaluated also have 4-5 atomic % total 

of platinum-group metals, in this case platinum and iridium.  The feasibility of hot rolling these 

alloys to a final thickness of 175-250 µm and obtaining a nearly fully recrystallized 

microstructure was demonstrated.  However, an anomalous grain-growth behavior was also 

observed at the surface in the intermediate and final rolled products.  Future work will include 

evaluating alloys with a combination of rhenium and tantalum (up to 2 atomic % total) in place 

of the platinum and iridium. 
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Nickel-base superalloys having densities exceeding 8 g/cm2 may not initially be thought 

of as viable materials for acreage thermal protection systems (TPS) on hypersonic or space 

vehicles.  Indeed, as the only reusable spacecraft currently in operation, the Space Shuttle utilizes 

many types of non-metallic TPS materials, in both tile and blanket form.  In many cases, these 

nonmetallic materials are the only option under extreme environments (in terms of temperature, 

stress, etc.) which demand properties exceeding those of metallic thermal protection systems 

(MTPS) 1.  However, shuttle refurbishment between flights has been reported to require more 

than 17,000 labor hours2 with a total inspection and refurbishment time exceeding 40,000 hours3. 

This level of maintenance is unacceptable for U.S. Air Force applications, where the turn-around 

time goal is hours to days rather than weeks to months.   As a result, thin gage metallic sheet and 

foil may become an acreage option because the time for inspection can be significantly reduced, 

durability is improved, and replacement time is shortened because MTPS panels are 

mechanically attached rather than adhesively bonded.  Historically, sandwich construction MTPS 

(outer surface-Alloy 617 nickel-base superalloy honeycomb core and face sheets; inner surface 

titanium alloy honeycomb core and face sheets) was evaluated (Figure 1) and was considered to 

be a leading candidate for a significant portion of the lower surface of the National Aeronautics 

and Space Administration (NASA) X-33 vehicle2, a wedged-shaped subscale prototype of a 

reusable launch vehicle4 designed by Lockheed Martin.   

  Weight is critical in vehicle design because total vehicle weight will impact 

performance3.  In both current and proposed systems, the TPS is parasitic and not designed to 

carry significant structural load regardless of material selection5.  Because of the increase in 

density of MTPS, materials under consideration must be very thin, 0.17 mm-0.25 mm for a 

typical face sheet and 0.05mm-0.10 mm for honeycomb core.   One experimental class of alloys 
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being evaluated for MTPS applications is platinum-group-metal (PGM)-modified nickel-base 

superalloys where one substitutes PGM, in this case platinum and iridium for nickel.  Table 1 

identifies a few of the alloys that have been evaluated at the Air Force Research Laboratory as 

well as a baseline platinum-modified nickel aluminide–β-NiAl(Pt) composition, e.g. Ni-50Al-

15Pt used in the turbine-engine industry for airfoil coatings because of its oxidation resistance6-9.  

However, using β-NiAl(Pt) for a monolithic application is not practical because it is brittle and 

does not perform well across the entire service temperature range, particularly below 600°C.10,11  

Recent results on PGM-modified Ni + Ni3Al (γ + γ’) compositions for bond coats8,12-13 suggest 

that these γ−Ni  + γ’−Ni3Al compositions may be suitable thin gage candidates due to the 

formation of an adherent, protective α-alumina scale which provides increased environmental 

resistance over a larger service temperature range.14   In addition, results reported in the late 

1970’s and early 1980’s by Corti, et al 15-17 concluded that platinum had the best overall 

performance in both oxidizing and sulfidizing environments.  Figure 2 compares the oxidation 

resistance of β-NiAl(Pt), candidate materials, and commercial alloys. Cyclic oxidation testing 

was performed at Iowa State University and the detailed test procedures are described in 

reference **.  Although there is no added benefit to environmental resistance, iridium is added to 

the candidate alloys because it partitions almost equally to both γ and γ’ – there is a slight 

preference for the γ phase – and reduces the lattice mismatch.20,21 

Corti, et al also documented15-17 that platinum provided the best strength at temperatures 

in excess of 1000°C because it partitions to and strengthens the γ’ precipitate phase.18,19  A high 

volume fraction of the precipitate phase is desirable for reasonable high temperature strength and 

adequate creep resistance, which are important MTPS design considerations and may allow the 
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use of thinner foils than is possible with conventional Ni-based superalloys.  Figure 3 compares 

the tensile strength of commercial alloys to the PGM-modified candidates at room and elevated 

temperatures at comparable thicknesses.   

Platinum prices fluctuate substantially20 with a high in early-mid 2008 at over $2200/troy 

oz and an average price for the 1st quarter of 2010 at $1600/troy oz.  Because some of the 

candidate compositions being evaluated at AFRL contain a Pt content of 2-3 atomic %, the 

material cost is not trivial.  However, the inherent environmental resistance may justify this high 

cost if the alloy does not require additional environmental or thermal barrier coating (E/TBC) 

prior to service.  Introduction of an E/TBC to either the face sheets or the core dramatically 

increases system complexity and expense.  Also, these high cost alloys may not make up the 

entire sandwich structure, but instead used for the most demanding environmental applications.  

This assumes thin gage sheet and foil of a candidate alloy can be 1) produced by conventional 

hot working processes, 2) further manufactured into honeycomb core, and 3) subsequently joined 

to fabricate MTPS panels.  However, processing of superalloys, let alone PGM-modified 

superalloys into the desired thin gages can be challenging.  At present, most of the experience 

with PGM-modified Ni-base superalloys has been in the area of casting; relatively little has been 

reported on wrought processing.21,22  Hypersonic heat exchanger applications will not be 

discussed in any detail but the processing, manufacturing and joining issues identified above are 

a consideration for this application as well.  Research results to date include evaluating the hot 

working characteristics of and establishing the feasibility of near-conventional processes for 

producing sheet and foil products of an experimental PGM-modified Ni-base superalloy 

composition.23 
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Figure 1. 
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Figure 2.  Oxidation performance of β-NiAl(Pt), PGM-modified Ni-base superalloys and 
commercial Ni-base superalloys.  This is a representative figure.  Candidate alloys and 
commercial alloys will be added to final figure. 
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Figure 3. Tensile property comparison at 850 oC of candidate materials to commercial Ni-base 
superalloys.  These are representative curves.  Will add commercial alloys to final figure.  
 
Table 1. Atomic Percent 
 
Heat Number Ni Cr Al Hf C B Zr Pt Ir 
Pt-modified β 35.0   50.0         15.0   
5A 79.4 5.0 15.0 0.30 0.25 0.04 0.04     
5B 74.4 5.0 15.0 0.30 0.25 0.04 0.04 5.0   
5C 74.4 5.0 15.0 0.30 0.25 0.04 0.04 3.0 2.0 
8A 75.6 5.0 15.0 0.15 0.12 0.08 0.03 2.0 2.0 
10A 75.6 5.0 15.0 0.15 0.12 0.08 0.03 2.0 2.0 
10B 79.6 5.0 15.0 0.15 0.12 0.08 0.03     
10C 74.4 5.0 15.0 0.30 0.25 0.04 0.04 3.0 2.0 
10D 79.4 5.0 15.0 0.30 0.25 0.04 0.04     
10E 75.6 5.0 15.0 0.10 0.12 0.08 0.03 2.0 2.0 
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